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1. Introduction

Aluminium alloys form one of the most widely used groups of
materials in existence and they make products with wide ranging
areas of application. In terms of experimentally determined
phase equilibria, researchers such as Phillips! and Mondolfo?
have produced detailed reviews of the literature which provide in-
duétry standard publications. The reviews are based on exten-
sive work done on binary and ternary phase diagrams and many
of the key features of the phase diagrams are still accepted today.

However, although some important Al alloys are based on ter-
nary systems (for example the 356/ L.M25 casting alloy based on
Al-Mg-8i), they inevitably include small amounts of Cu, Mn,
Fe, Ti etc., all of which can significantly modify the castability
and final properties of the final product. The situation is exacer-
bated by the use of scrap material. It is therefore very useful to
be able to predict phase equilibria in multi-component alloys. A
means for doing this is provided by the CALPHAD method?.
The present paper provides a review of some of the published ap-
plications that have been made to Al alloys and looks forward to

potential advances that may be made in the near future.
2. The CALPHAD method

The CALPHAD method has now become a well-established
route for predicting phase equilibria in multi-component alloys®.
Its scientific basis lies in the mathematical description of the
Gibbs energy of the various phases that exist in an alloy system.
Minimisation methods are then applied so that the mixture of
phases providing the lowest Gibbs energy for the alloy of choice
is calculated. Thermodynamic calculations have often been per-
ceived as rather theoretical and applicable only to simple sys-
tems. However, verification of CALPHAD predictions against
multi-component alloys of many types has shown that the CAL-
PHAD method can provide results that are very close to ex-
perimental observation®.

There are now established models that can be used to describe

the thermodynamic properties of many different types of
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phase®)~% . All types of models require input of coefficients,
which are held in databases. These databases are then accessed
by software that performs Gibbs energy minimisation and com-
plex multi-component calculations can be performed. There are
now a variety of software packages for doing this and the recent
review by Bale and Eriksson® provides a fairly comprehensive
coverage of these.

It is only in recent years that attempts have been made to cal-
culate phase equilibria for multi-component Al alloys. Previous
work had tended to rely on modelling binary and terﬁary sub-sys-
tems, but this position has changed and predictions for complex
Al alloys can now be routinely performed® 7 ~9).

The CALPHAD method is based on predicting the ther-
modynamic properties of the higher-order system from those of
the lower-component binary and ternary systems. This provides
a very powerful methodology as information from binaries and
ternaries can be used directly towards a quantitative prediction
of multi-component behavior. Because of the importance of the
lower order calculations it is instructive to view typical results for
two ternary systems (Fig. 1) before proceeding to the main part

of the paper concerning multi-component calculations.
3. Applications

3.1 3000 series alloys for Can Body Stock

Beverage cans provide one of the largest and most important
areas of application for Al alloys and a critical component is the
can body stock (CBS). The most prevalent alloys used for this
application are 3000 series alloys and one of the most important
features of these alloys is the breakdown, or partial breakdown,
of the Als(Fe, Mn) intermetallic phase (which is the
predominant intermetallic formed during the casting process) to
a-AlFeMnSi. The interplay between « and AlgMn is critical, as
the surface finish during fabrication of cans is much improved if
a particles, rather than AlsMn, predominate!®:10.

Fig. 2 shows the amount of each phase in a 3004 alloy as a
function of temperature®. It can be seen that during solidifica-
tion the major intermetallic to form is AlgMn but, around the

solidus, a forms on cooling and becomes the dominant inter-
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metallic over a significant temperature range. It is recognised
that solidification in Al alloys rarely proceeds to equilibrium but
even taking into account limited back diffusion during solidifica-
tion (see section 3.3) AlgMn is still the predominant phase
formed during solidification. As the temperature is lowered
Mg,Si is formed at the expense of @ which is to be expected be-
cause of the strong affinity of Mg,Si for Si. The competition be-
tween o and Mg,Si is recognised and it has been proposed that
Mg,Si particles formed during initial processing act as nuclea-
tion sites for the formation of @ which grows by the release of Si
from the dissolving Mg,Si particles'?.

It is clear that the calculations show most of the major features
of phase formation in these types of alloy. The AlsMn/a competi-
tion is clearly seen as is the competition between MgySi and a.
Further, the results are also quantitatively close to experimental
observation. For example, the amount of « predicted to form dur-
ing high temperature heat treatment in a AA3004 alloy is close
to that measured experimentally by Cama et al'?. Marshall!D
reported results for the closely related AA3104 alloy where the
transition from Mg;Si to « is observed somewhere between 350
and 400°C. Calculations suggest this transition occurs in the tem-
perature range 360-440°C, which is again in rather good agree-
ment with observation.

CALPHAD calculations can now be used to enhance under-
standing of the effect of composition changes on phase formation
in this alloy as well as providing information on Thermo-physi-
cal properties such as heat capacity that can be utilised for proc-
ess modelling.

3.2 T/MgZny/S equilibria in 7000 series alloys

Probably the most complex type of Al alloys are the 7000
series of alloys. They are based on the AI-Cu—Mg—Zn quaterna-
ry system and the solubility of the various elements in Al is quite
substantial. This allows high levels of solute to be taken into solu-
tion before subsequent low temperature ageing treatments
produce a series of potent hardening reactions. The hardening
reactions are based on three phases, or the metastable forms of
these phases. (1) #, which is based on the binary Mg~Zn Laves
compound but also exists in Al-Cu—Mg, (2) T_AlICuMgZn,
which exists in both the AI-Cu—Mg and Al-Mg—Zn systems,
and (3) S_AlL,CuMg (as in a AA2024 alloy). In 7000 alloys the
Zn/Mg ratio is considered most critical in deciding the type of
precipitation reaction that takes place!'®.

In practice 7000 alloys achieve maximum hardness due to the
precipitation of the metastable phases that are related to the sta-
ble counterparts #, T and S. At present, thermodynamic descrip-
tions for these phases do not exist. However, because of the in-
herent relationship between the metastable and stable forms of
the compounds, it is reasonable to expect the metastable
precipitate that forms will closely follow the respective stable
type predominant in the alloy. Also, a number of important ques-
tions connected with processing are directly related to the stable
forms; for example solution and intermediate heat treatment
temperatures and phase formation during non-equilibrium

solidification. It is therefore of value to look at a series of calcula-
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Fig. 2 (a) Calculated phase % vs. temperature plot for a
AA3004 alloy and (b) Expanded region of Fig. 2a.
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tions for 7000 alloys to observe how the calculated diagrams vary
as the composition of the alloys is changed?. B

Fig. 3 show the precipitation behavior of the 3 major harden-
ing phases, #, T and S, as well as e~AlICrMnMg and Mg5Si, for
a series of high strength 7000 series alloys with Zn:Mg ratios as
given in Table 1. For simplicity, other phases that may appear,
such as AlgMn, «o etc., have not been included. AA7049
represents the alloy with the highest Zn:Mg ratio and the harden-
ing phase, as expected, is almost completely #7. As the Zn:Mg ra-
tio in the AA7050 alloy is reduced to 2.7 the 7/ T competition is
still won easily by 7 but, due to the high levels of Cu in this alloy,
it is also significantly prone to the formation of S_Al;CuMg. The
7075 alloy has a lower Zn:Mg ratio of 2.3. Although still
predominantly hardened by #, some T phase appears below
200°C and it is noted that the level of S phase is reduced. Both of
these effects are due to the reduction of Cu levels in AA7075.
This means that less S phase is formed, which releases Mg, and
effectively means that more Mg is available in the alloy. One is
therefore forced to consider the concept of an ¢ffective Zn:Mg ra-
tio which is potentially affected by the level of Cu in the alloy and
also Si which will react with Mg to form Mg,Si. The final alloy,
AA7079, has the lowest Zn:Mg ratio at 1.3, well below a value of
2 which is considered the critical point at which the T phase is
favoured. As would be expected the main precipitation now oc-

curs by the T phase.
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% Solute —>
Fig. 4 Schematic representation of solidification occur-
ring under ‘Scheil-Gulliver’ conditions.

As mentioned previously, the predominant hardening in these
alloys may be controlled by the metastable forms of the various
phases. However, it is clear that the calculations have allowed a
very quick scan to be made of the major precipitation type and
this must have significant bearing on the formation of the
metastable forms. Furthermore, the role of Cu and Si can be bet-
ter understood as can the effect of the various minor elements on
the ‘insoluble’ compounds.

3.3 Solidification

Al alloys exhibit complex solidification patterns that can be
predominantly eutectic or dendritic in nature depending on al-
loy type. Small amounts of minor impurities can give rise to the
formation of unwanted intermetallic phases, immediately com-
plicating the position concerning the use of scrap materials.
Transitions between the various intermetallic phases can also be
quite composition dependent. Even in commercially pure Al
there are transitions between AlsFe and the metastable AlgFe
that are not always simple to understand!¥.

It has been shown that th: complex solidification paths and
transitions between intermctiallics during solidification can be
predicted to a high degree of accuracy in Al alloys using the so-
called Scheil-Gulliver model?)7):1%),16) | The process that physical-
ly occurs can be envisaged in the following way'® (Fig. 4). A lig-
uid of composition Cy is cooled to a small amount below its lig-
uidus to Ty. It precipitates out solid with a composition C$ and
the liquid changes its composition to C}. However, on further
cooling to T; the initial solid cannot change its composition due
to lack of back diffusion and it is effectively ‘isolated’. A local
equilibrium is then set up where the liquid of composition C}
transforms to a liquid of composition C} and a solid with compo-
sition C$ is precipitated onto the original solid with composition
Cf. This process occurs continuously during cooling and, when
k<1, leads to the solid phase becoming lean in solute in the cen-
tre of the dendrite and the liquid becoming more and more en-
riched in solute as solidification proceeds. Eventually, the compo-
sition of the liquid reaches that of the eutectic and final solidifica-
tion occurs via this reaction.

Any appearance of secondary phases can be easily taken into

account if it is assumed that no back diffusion occurs in them.
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Table 1 Composition and Zn/Mg ratio of various 7000
series alloys after Polmear!®. Values for Si, Fe and Mn
relate to maximum values

Alloy Si Fe | Cu |Mn |[Mg|Zn | Cr |Zn/Mg

AA7049|0.25 | 0.35 | 15| 0.2 |25 |7.7]0.15 3.1
AA7050| 0.12 | 0.15 | 2.3 | 0.1 | 2.3 | 6.2 | 0.04 2.7
AA7075| 0.4 | 0.5 1.6 {0325 ]5.6|0.23 2.2
AA707910.3 |04 |06]0.2]33]|7.6]0.18 1.3
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Therefore, all transformations can be accounted for including
the final eutectic solidification. A further and very significant ad-
vantage of using a thermodynamic approach is that the heat evo-
lution during solidification is a straightforward product of the cal-
culation. The limit to the ‘Scheil-Gulliver’ simulation is that
some back diffusion will take place but, if the degree is small,
good results may still be obtained.

This section will be divided into three parts. (1) A detailed
comparison between prediction and experiment for fraction solid
transformed during solidification for a variety of different types
of Al alloys. (2) Examples of the prediction of the latent heat pro-
duced during non-equilibrium solidification. (3) The results of a
simulation of the solidification of a 356/LM25 alloy using a
finite difference solidification package!”) will be shown demon-
strating the high level of accuracy that can be obtained using
predicted latent heat/CP information.

3.3.1 Comparison of experimental and predicted fraction
solid transformed during non-equilibrium solidification

As part of an extensive experimental programme, Backerud et
al.'® examined nearly 40 Al alloys. Their work provides fs vs.

temperature curves for all alloys studied and detailed informa-
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Fig. 5 Fraction solid vs. temperature plots for various Al alloys calculated under ‘Scheil-Gulliver’ conditions with experimental

results (O) of Backerud et al.!® shown for comparison.
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tion on the phases formed during solidification. All of the alloys
studied by Backerud et al.!8) have been modelled and the predict-
ed results for both fg vs. temperature and phase formation
compared!®-1® Fig. 5 shows comparisons for 9 of these alloys
which encompass most of the major type of Al alloys.

The comparison between the phases observed by Backerud et
al.!® and those predicted is also very good. There are usually
more than 3 phases other than Al formed in any given alloy and,
in some, as many as 8. The success rate for predicting these is
>909% . There are phases predicted to appear which are not ob-
served, but these mainly occur in the last 1-29 of solidification
and of these the great majority are predicted to form in the last
0.5% of solidification. This would be consistent with the break-
down of ‘Scheil-Gulliver’ conditions, but may also be because
the amount of phase being formed is so small that it would not be
observed anyway.

3.3.2 Examples of predicted latent heat of solidification

One of the most important factors in solidification modelling
packages, such as PROCAST or MAGMASOFT, is the latent
heat/Cp evolution of the alloy during solidification. This is
strongly dependent on alloy composition and within a given com-
position specification for a casting alloy such as 356/L.M25 can
significantly change. To measure this property can be difficult
and time consuming before even considering questions concern-
ing the accuracy of the measurement.

One of the advantages of the thermodynamic modelling
presented here is that the latent heat/C;, evolution is straightfor-
wardly obtained and calculations for three distinctly different
types of Al alloy are shown in Fig. 6. The first is a complex eutec-
tic alloy 339—1, where a multiplicity of compounds is formed dur-
ing solidification. The second is 356/ L.M25, one of the most com-
mon of the hypoeutectic casting alloys, while the third is a long
freezing range alloy AA7075.

3.3.3 Simulation of temperature vs. time profiles during

ingot casting of a2 356/LM25 alloy

Heat evolution calculated via the CALPHAD route has been
input into a finite difference numerical heat transfer solidifica-
tion model!? used to simulate the casting of a LM25/356 alloy!?.
Fig. 7 shows the casting used by Spittle et al.!9) with position of
thermocouples used to monitor the time/temperature history
during solidification. Fig. 8(a) shows temperature vs. time
profiles measured from all six thermocouple positions that can be
compared with the casting simulation using calculated latent
heat/Cp data (Fig. 8(b)). The calculated plot is in good agree-
ment with experiment, with the primary Al and Si eutectic
regions differentiated clearly. The calculation provided an excel-
lent source of input data for and was considered superior to that
obtained from the simple assumptions usually used when no in-
put data was available!?, Later work??) showed the use of calcu-
lated thermodynamic input provided an accuracy of result com-
parable to that obtained when using experimentally determined
latent heat/Cp values. It was concluded, therefore, that calculat-

ed values could be substituted in their place.
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Fig. 6 Plots of latent CP of solidification for three Al al-
loys, (a) 339-1, (b) 356/LM25 and (c) AA7075.
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Fig. 7 Sand mold used by Spittle et al.!® with positions of
thermocouples.

4. Future work

Much of the work presented in this paper results from calcula-
tions using a thermodynamic database with the following ele-
ments Al, B, C, Cr, Cu, Fe, Mg, Mn, Ni, Si, Ti, V, Zn, Zr de-
scribed in previous publications®-7-19 . This database probably
provides the greatest elemental coverage presently available for
Al alloys and covers most alloy types. The inclusion of C and B
further means that it can also be used for analysing grain
refining additions. However, elements such as Li and Ag need to
be added to cover important classes of hardenable alloys. There
is also a need to include elements such as Na, P and Sr that are
added quite regularly to casting alloys. Such work is on going
and an enhanced capability for new elements will be achieved in
the coming years.

At present, there is a need to properly account for the metasta-
ble hardening phases. If the requisite thermodynamic informa-
tion were available, it would be quite straightforwardly possible
to calculate metastable phase equilibria to help monitor the effect
of alloy composition on hardening response. Further, it would
be possible to integrate the CALPHAD calculations into kinetic
and microstructure models so that time/temperature history can
be accounted for. This would be particularly important for Al al-
loys with their complex hardening responses.

It is possible to estimate properties for phases such as 8" and
8", B'—MgSi and #’ from knowledge of metastable solvus mea-
surements. However, the more complex behavior associated
with GP zone formation should also be addressed. It has been
speculated that GP zone formation Al-Cu alloys is associated
with the formation of a metastable miscibility gap in the Al solid
solution?)) and the present thermodynamic assessment for Al-
Cu?? supports this proposal. However, it is noted that the GP
solvus is displaced to significantly lower temperatures than
predicted from a straightforward calculation of the miscibility
gap. This would be consistent with elastic energy effects due to
lattice mismatch that would displace the coherent solvus to lower
temperatures. The general area of coherency effects on the forma-

tion of metastable precipitates represents an exciting challenge
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Fig. 8 (a) Experimental and (b) predicted thermal analysis curves'® for a 356/LM25 alloy cast into sand mold as shown in

Fig. 7.

and extension to the traditional CALPHAD approach. Such cal-
culations have already been undertaken in other alloys systems,

for example in steels?®, and should be extended to Al alloys.
5. Conclusions

The current state of art of phase diagram calculations for Al al-
loys is well advanced. Calculations can now be routinely made
for very complex alloys of most major types and an extensive
number of examples have been shown in the present paper. Of
particular note are the excellent results that can be obtained for
solidification behavior both in terms of phase behavior and of
subsequently calculated Thermo-physical properties. The calcu-
lations have been combined with both finite difference and finite
element heat flow models and used for solidification modelling
with excellent success. Suggestions for future work have been
given which would extend the use of the CALPHAD method
into areas not traditionally associated with thermodynamic calcu-

lations.
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