
Modelling Dendritic Solidification with Back Diffusion 

 

The solidification of multicomponent alloys is a complex process controlled by the interplay of 
thermodynamic driving forces and solute transfer kinetics. Traditional models[1] are based on the 
assumption that solute diffusion is infinitely fast in the liquid, and consider two limiting cases for the 
diffusion in the solid, or back diffusion. If the back diffusion is also assumed to be infinitely fast, an 
equilibrium model, often referred to as the lever rule approach,[1] is obtained. Neglecting the back 
diffusion leads to the nonequilibrium Scheil-Gulliver model,[1] which is a more appropriate description in 
many cases.[2,3] However, in some alloys, for example single crystal Ni-based superalloys and steels, the 
Scheil-Gulliver approximation clearly breaks down and, to model solidification accurately, back diffusion 
must be accounted for. Furthermore, adding back diffusion to such cases is essential to predict the 
changes in microsegregation and the nature and amount of secondary phases formed as a function of the 
cooling conditions,[4] which in turn is critical to determine the properties of the alloy.[5,6] This report 
provides an overview of the model used in JMatPro to calculate the effect of back diffusion on the 
dendritic solidification of multicomponent alloys. 

Model Description 

The model is based on the following assumptions: 

• The shape of the dendrite is approximated by one of three possible geometries: plate, cylinder, or 
sphere, respectively characterised by the coefficient 𝑔 = 0,1,2. The concentration profiles are 
assumed to vary only along the length of the plate, or the radius of the cylinder or sphere, so that, 
in all cases, the microsegregation domain can effectively be treated as one-dimensional. The 
domain length is taken as half of the secondary dendrite arm spacing, 𝜆, and the position along the 
relevant direction is denoted 𝑟. 

• Only one solid phase is included in the calculation of back diffusion. Formation of secondary 
phases is dealt with separately and leads to two steps in the model. The first step involves the 
thermodynamic calculation of all the phases that grow from the liquid at temperature 𝑇. The 
secondary phases obtained are then rejected from the system and an isothermal diffusion step 
follows, in which only the primary solid phase and the remaining liquid are considered. The 
duration of this step, Δ𝑡, is determined from the cooling rate, 𝑇, and temperature step, Δ𝑇, input by 
the user. 

• Local equilibrium is assumed at the solid/liquid interface, i.e., the interfacial concentrations in the 
solid (𝑆) and liquid (𝐿) phases, respectively denoted 𝐶!"∗  and 𝐶!"∗  for component 𝑖 (𝑖 = 1,… ,𝑁), are 
related via thermodynamic equilibrium conditions.[1,4] 

• Solute diffusion in the liquid is taken as infinitely fast and, thus, the concentration in the liquid 
phase is uniform, i.e., 𝐶!" 𝑟 = 𝐶!"∗ . In the solid, on the other hand, solute diffusion is considered 
finite and governed by Fick’s second law.[7,8] Inter-solute terms are neglected and an Arrhenius 
form is assumed for the diffusion coefficients:[7] 

 𝐷! = 𝐷!! exp − !!
!"

 (1) 

In the above expression, 𝐷!!  denotes a frequency factor, 𝑄!  a molar activation energy, and 
𝑅 = 8.3144  J  mol!!  K!! is the gas constant. 

• During the isothermal diffusion step there is no solute flow into or out of the dendritic domain. 
The sum of the molar fractions of the solid and liquid phases, 𝑓! = 𝑓! + 𝑓!, and the average 
concentration of each component in the dendrite, 𝐶!" , are determined beforehand in the 
thermodynamic calculation step and can only change in the next step, upon decreasing the 
temperature. 



• The difference between the molar volumes of the solid and liquid phases is considered to be small 
enough so that a simple relationship between the position of the solid/liquid interface, 𝑟∗, and the 
molar fraction of solid, 𝑓!, can be used: 

 𝑓! = 𝑓!
!∗

!

!!!
 (2) 

• Dendrite tip undercooling and coarsening effects are neglected. 
The above considerations essentially prescribe treating the growth of the primary solid phase as a 
diffusion with a moving boundary problem, while for the secondary phases the Scheil-Gulliver model is 
used. The evolution of the concentration profile for component 𝑖 in the primary solid, 𝐶!" 𝑟 , is governed 
by the equation:[8] 

 !!!"
!"

= 𝐷!
!!!!"
!!!

+ !
!
!!!"
!"

, 0 ≤ 𝑟 ≤ 𝑟∗ (3) 

At the centre of the dendrite (𝑟 = 0), a zero-flux boundary condition is used, 

 !!!"
!"

= 0 (4) 

while at the solid/liquid interface (𝑟 = 𝑟∗), local equilibrium conditions are imposed:[1,4] 

 𝐶!"∗ = 𝑘!𝐶!"∗  (5) 

The interfacial concentrations in the solid and liquid phases are, thus, related via equilibrium partition 
coefficients, 𝑘!, which are fixed for the duration of the isothermal diffusion step, but are allowed to vary 
between steps. 
The diffusion equations are coupled by requiring conservation of solute, 

 𝑓! 𝐶!" + 𝑓!𝐶!"∗ = 𝑓!𝐶!" (6) 

and ensuring that the liquid composition rests on the liquidus isotherm at temperature 𝑇: 

 𝑇 = 𝑇! + 𝑚!𝐶!"∗!
!!!  (7) 

This guarantees that the position of the interface is the same for every component in the alloy. In the 
above expressions, 𝑇! denotes the melting point of the pure solvent (labelled by 𝑖 = 1), 𝑚! = 𝜕𝑇 𝜕𝐶!"∗  
the liquidus slopes,[1] and the average concentrations in the solid are calculated as 

 𝐶!" = !!!
!∗ !!! 𝐶!" 𝑟 𝑟!𝑑𝑟

!∗

!  (8) 

Solution of the coupled set of nonlinear equations (3), (6), and (7) provides the interface growth over the 
time step Δ𝑡, the updated solute concentration profiles in the solid, as well as the composition of the 
remaining liquid, which is used as the basis for the next isothermal step. 

Case Studies 

Figure 1 shows a comparison of the fraction solid vs temperature curves obtained using equilibrium, 
Scheil-Gulliver, and back diffusion models for different types of alloys often considered in casting 
simulations: AA356 (Al-0.01Cu-0.2Fe-0.3Mg-0.02Mn-7Si-0.1Zn wt%), AA7075 (Al-0.23Cr-1.6Cu-
0.5Fe-2.5Mg-0.3Mn-0.4Si-5.6Zn wt%), ZMC711 (Mg-1.25Cu-0.75Mn-6.5Zn wt%), and NiFe 718 (Ni-
0.5Al-19Cr-18.5Fe-3Mo-5.1Nb-0.9Ti-0.04C wt%). The back diffusion calculations were performed 
assuming a cylindrical dendrite geometry and using a cooling rate of 0.1 °C/s. For the investigated Al 
alloys, AA356 and AA7075, this leads to a secondary dendrite arm spacing of about 150 µm.[9] The same 
value was assumed for the Mg alloy ZMC711, but for Ni and Ni-Fe-based superalloys a secondary 
dendrite arm spacing of 100 µm is more common at the same cooling rate,[10] and this lower value was 
chosen in the case of alloy NiFe 718. As can be seen in the figure, for all these alloys the back diffusion 
result follows closely the Scheil-Gulliver one. This can be qualitatively understood by the low liquidus 
temperature and/or wide freezing range, which quickly reduce possible back diffusion as diffusion 
coefficients decrease exponentially with temperature. 



For certain material types and alloy compositions, the above argument does not hold and back diffusion 
plays a significant role during solidification. Figure 2 illustrates this effect by comparing the fraction solid 
vs temperature curves obtained using equilibrium, Scheil-Gulliver, and back diffusion models for the Ni-
based superalloys Udimet 720Li (Ni-2.5Al-14.7Co-16Cr-3Mo-5Ti-1.25W-0.015B-0.01C wt%) and René 
N6 (Ni-5.75Al-12.5Co-4.2Cr-0.15Hf-1.4Mo-5.4Re-7.2Ta-6W wt%). In the back diffusion calculations, a 
cylindrical shape was taken for the dendrite geometry, the cooling rate was set to 0.1 °C/s, and a 
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Figure 1: Total fractions of solid calculated as a function of temperature using equilibrium, Scheil-Gulliver, and back 
diffusion models for different alloys: (a) AA356, (b) AA7075, (c) ZMC711, and (d) NiFe 718. 
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Figure 2: Total fractions of solid calculated as a function of temperature using equilibrium, Scheil-Gulliver, and back 
diffusion models for the Ni-based superalloys Udimet 720Li (a) and René N6 (b). 



corresponding value of 100 µm was used for the secondary dendrite arm spacing. The results are in 
striking contrast to those of Fig. 1, as the back diffusion predictions for these alloys fall in between the 
equilibrium and Scheil-Gulliver ones. 
The case of the Ni-based superalloy René N6 is particularly instructive to highlight the importance of 
back diffusion. Figure 3 shows the breakdown of the total fractions of solid into contributions from 
primary and secondary phases, calculated for the whole freezing range of this alloy with Scheil-Gulliver 
and back diffusion models. It is seen that including back diffusion leads to a considerable reduction in the 
fraction of eutectic γ’ that is ultimately obtained, with profound implications on the choice of heat 
treatment schedules. Additionally, since the solidus is located well above the Scheil-Gulliver prediction, 
three other secondary phases (P, η, and NiAl) are not formed at all. Not surprisingly, back diffusion also 
leads to more homogeneous solute concentration profiles, as illustrated in Fig. 4 for components Mo and 
Ta. This effect is more noticeable for faster diffusing elements, such as Mo in γ phase. 
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Figure 3: Contributions of primary and secondary phases to the total fractions of solid obtained during solidification 
using Scheil-Gulliver (a) and back diffusion (b) models for the Ni-based superalloy René N6. 
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Figure 4: Concentration profiles obtained at the end of solidification using equilibrium, Scheil-Gulliver, and back 
diffusion models for components Mo (a) and Ta (b) of the Ni-based superalloy René N6. 
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