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Introduction 

Formability is the ability of sheet metal to undergo shape change without failure by necking or tearing [1]. Two 

types of necking occur in a standard tensile test, namely diffuse and localized necking (Fig. 1a) [1,2,3]. The 

diffuse necking appears when the maximum engineering stress is reached, as caused by the in-plane instability 

in the width direction. The strain at diffuse necking is often called uniform elongation. Whereas the localized 

necking is due to the through-thickness instability leading to severe reduction in the local thickness (close to 

fracture). The strain at localized necking is often between the uniform elongation and total elongation. Here it 

is called “uniaxial tensile limit strain”. A forming limit curve (FLC) is a curve of deformation limit generally 

governed by localized necking that associates with ductile fracture. FLC plots the major strain at the onset of 

localized necking for all values of the minor strain at different loading paths, e.g. uniaxial, equibiaxial, etc, 

and the full graph is called forming limit diagram (FLD, see Fig. 1b) [2,3,4].  

        
                                      (a)                                                                                              (b) 

Fig. 1 (a) Standard tensile test with different elongations; (b) Standard forming limit curve (FLC) obtained by a 

combination of different loading ratios. 

 

A standard FLD test requires proportional loading conditions, where the ratio of major and minor strain 

increments (α = dε2 / dε1) remains constant throughout the forming process. The elastic strain can be ignored 

since the forming process often involves large deformation mainly consisting of plastic strain. FLD can be 

divided into two branches considering the sign of α. 

1) Left branch, from uniaxial tensile loading to plane strain loading (α from -0.5 to 0 in isotropic condition); 

2) Right branch, from plane strain loading to biaxial loading towards equibiaxial stretching (α from 0 to 1).  

The two branches match at “plane strain” condition at α=0, the lowest point on FLC, or FLC0. Beyond the 

full range of α, other fracture mechanisms may occur [2], which is not the concern in this article. Fig. 1(b) 

illustrates the standard strain-based FLC, which is understood to be history dependent [5] that can shift given 

pre-existing residual strain (Fig. 2a, Ref. [5]). While the stress-based FLC or forming stress limit curve (FSLC) 

is found to be history and path-independent (Fig. 2b, Ref [5]). At room temperature without any history effect, 

FSLC and FLC are considered to be identical representation of the forming limit.  



 

      
                                            (a)                                                                                          (b) 

Fig. 2 (a) Schematic changes to FLC with different levels of pre-strain [5]; (b) History and path-independent stress-based 

FLC [5] 

 

Complexity arises when the sheet metals are strongly anisotropic. Plastic anisotropy of a sheet metal is often 

measured by the Lankford coefficient, also called R-value. It affects the yield criterion or yield surface that 

can ultimately influence the formability of the sheet metals. As a further development of the mechanical 

properties capability for JMatPro®, this article provides an overview of the model incorporated in JMatPro® 

to calculate both strain-based and stress-based forming limit diagram, based on the existing flow stress curve 

calculation capability in JMatPro®.  

 

Modelling of FLD at room temperature 

Models used for FLD are different for the left and right branch, but are based on the following assumptions: 

1) Non-quadratic Logan-Hosford yield criterion (2D) 
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where σ1 and σ2 are the major and minor principal true stresses, σeq is the equivalent true stress, R is 

Lankford coefficient (R=1 if isotropic) and p is the order of yield surface typically between 2 and 12. Here 

only the single normal R-value is used. When R=1, p=2, it simplifies into the popular quadratic Von Mises 

isotropic yield criterion.  
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Figure 3 illustrates some example yield surfaces for plane stress problems given the same uniaxial yield 

strength but different values of R or p. It should be noted that although the yield surfaces with different 

values of p are not far apart, the strain-based FLD can be significantly different, which will be illustrated 

later in the result evaluation. 



 

  

Fig. 3 Schematic 2D yield surface at 200MPa equivalent yield stress: (a) when R=1 but p varies; (b) when p=8 but R 

varies. 

   

2) Plastic flow rule 
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where dλ is the proportionality constant equal to the effective strain increment dεeq. Under Von Mises yield 

criterion, 𝑑𝜀𝑒𝑞 = 2 √3⁄ √𝑑𝜀1
2 + 𝑑𝜀1𝑑𝜀2 + 𝑑𝜀2

2 = 2 √3⁄ 𝑑𝜀1√1 + 𝛼 + 𝛼2 

3) Power-law constitutive law (n: hardening exponent; K: strength coefficient) 

n
eq eqK =                                                                              (4) 

 

1. Left branch of FLD 

In a standard uniaxial tensile test, the uniform elongation (true strain) can be approximated to be equal to the 

hardening exponent n. Hill [2,6] extends this to describe the strain at localized necking of sheet metals, assuming 

a local neck will form at the zero extension direction. The reduction in thickness and effect of hardening 

balance each other when the neck forms, i.e. the fractions within the material reach a state where the traction 

increments equal to zero. The zero extension direction has been derived with an angle 1tan −= − to the 

direction of the major principal stress. Therefore, Hill’s model is physically valid only when α<0 thus it can 

only be used for the left branch of FLD. Hill then derived the following criterion and the expression of the 

major and minor strain of FLC. 
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where the subscript “t” represents true stress/strain. Note we have replaced n with a characteristic elongation 

term εp, which provides some flexibilities in the calculation and further calibration as many factors may cause 

a shift in FLC, such as sheet thickness (a standard value is ~1mm) [7], forming speed (or strain rate) and 

temperature [3,4]. The strain rate and temperature effect is tackled later, while the thickness effect is out of the 

scope of this article. In addition, note that Hill’s theory for the left branch of strain-based FLD is independent 

of the Lankford coefficient R and the order of yield surface p.  

In Eq. (5), the characteristic term p is equivalent to FLC0 when α=0 (Fig. 1b). In a generalized condition, 

𝛼 = −𝑅/(1 + 𝑅) represents uniaxial tensile loading direction, hence the localized necking occurs at (1 +
𝑅)𝜀𝑝. In the specific isotropic condition (R=1), 𝛼 = −0.5 represents uniaxial tensile loading direction and the 



 

localized necking occurs at 2p. If all other factors (e.g. sheet thickness, strain rate and temperature) can be 

ignored, (1 + 𝑅)𝜀𝑝 in FLD can be approximated to be the uniaxial tensile limit strain (Fig. 1a) obtained 

from a standard uniaxial tensile test (although specimens and procedures of the two tests are different). 

Combining Eqs. (1) and (3)-(5), the corresponding stress-based FLD can be obtained. Different from the 

strain-based FLD (Eq. 5), choice of R and p would affect the stress-based FLD. Eq. (6) shows the expressions 

at isotropic condition (R=1, p=2) while the general expressions are ignored in this article due to complexity.  
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2. Right branch of FLD 

For the right branch of biaxial stretching, two theories are applied to better describe the formability of sheet 

metals made from different materials. Firstly, the Bressan-William (BW) theory [8] assumes that the instability 

starts when the local shear stress along the pure shear strain direction exceeds a critical value, which can be 

predicted from the major principal stress simply from Mohr’s circle. 
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where cos 2 / ( 2)  = − + represents the orientation of the plane of critical shear stress. Expressions of the 

right branch of the stress-based FLD are firstly determined by matching the BW criterion and the modified 

Hill expression (Eq. 6) at the plane strain condition (α = 0) and calibrating the critical shear stress. Then it is 

combined with Eqs. (1), (3) and (4) to obtain the expressions of the strain-based FLD. Eqs. (8) and (9) are the 

expressions at isotropic condition (R=1, p=2) while the general expressions are ignored due to complexity. 
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The second theory is the Storen-Rice (SR) bifurcation or vertex theory [2-5]. It assumes that the instability starts 

when a bifurcation or vertex, as associated with the uncertain direction of plastic flow which triggers 

inhomogeneous deformation, eventually develops on a yield surface. Eqs. (10) and (11) are the expressions of 

strain- and stress-based FLD at isotropic condition (R=1, p=2) using this theory. 
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where the term 𝜀𝑝/𝑛 is incorporated to allow flexibility in the FLC0 calculation, similar to the Hill and BW 

models. 

Other models for the right branch exist, such as the Swift biaxial diffuse necking criterion [2] and the Tresca 

maximum shear stress criterion [2]. The former assumes that instability starts when diffuse necking occurs 

along both principal directions of stress, while the latter assumes that instability starts when the maximum 

shear stress exceeds a critical value. However, these theories have been shown to be less consistent with data 

compared with BW and SR theories [2]. A well-known universal theory applicable for the entire FLD is the 

Marciniak-Kuczynski (MK) geometrical imperfection theory [3,4]. This theory postulates an initial groove, 

which contains an initial defect characterized by either a geometric variation in the thickness with some 

physical connection with the initial porosity [9] or material non-uniformity in the hardening exponent [7]. The 

MK theory assumes that instability starts when the defect has grown extensively to a critical ratio compared 

with that of the “healthy” region. FLD is determined by fitting a new parameter to the data, named initial 

inhomogeneity of thickness. However, quite a few studies [3,4] have complained about the over-sensitive nature 

of this new parameter. 

The combination of the modified Hill and Bressan-William (HBW) criterion or Storen-Rice (HSR) criterion 

are the fundamental framework of FLD calculation in JMatPro®, with four governing parameters (n, R, p and 

εp) while the loading ratio α is a known parameter in the forming process. Among these four parameters, n 

and R influence the entire shape of FLD, p only affects the right branch, while εp plays the role of shifting and 

scaling the entire FLD. It is apparent that the prerequisite for FLD computation is the flow stress curve 

calculation, which is available in JMatPro®. For the applicability of these combined models, HSR is used for 

Al, Ti and Mg alloys, while HBW is used for other materials (e.g. Ni and Fe alloys). 

 

Evaluation of FLD at room temperature (RT) 

In this section, we evaluate the strain-based FLD at room temperature (RT). In the literature, Al and Fe alloys 

have been the most popular alloy types with FLD applications. An extensive data collection of FLC0 and n of 

a series of Al and Fe alloys from literature [2,7,10-18] (with ~1 mm thickness) show that the average FLC0 is ~ 

n for Al alloys and ~ 1.5 n for Fe alloys. These have been found to be generally consistent with the uniaxial 

tensile limit strain obtained from the flow stress curve calculation in JMatPro®.  

FLD of several example Al and Fe alloys at RT are calculated and shown in Fig. 4 (for Al) and Fig. 5 (for 

Fe). An empirical relationship [2,7] is used to shift the reported FLD results if the sheet thickness is notably 

different from 1 mm. Good matches can be observed in all the alloys in Figs. 4 and 5. Note many calculated 

FLDs have covered a wider range of strain compared with the experimental data. This may be due to 

incomplete tests not covering the full range of loading ratios.   

 



 

   
                                        (a)                                                                                            (b) 

 

 

    
                                          (c)                                                                                            (d) 

Fig. 4 Comparison of measured and calculated room temperature FLD of four example Al alloys: (a) AA5182-O; (2) 

6016-T4; (c) 6111-T4; (d) 7075-T6 (0.78 mm thickness) and 7075-O (1.6 mm thickness) 

 

    
                                        (a)                                                                                            (b) 



 

  
                                          (c)                                                                                            (d) 

Fig. 5 Comparison of measured and calculated room temperature FLD of four example Fe alloys: (a) AK steel; (b) DC04; 

(c) DC06; (d) AKDQ 

 

Apart from Al and Fe alloys, the justified approach also works for other types of alloys. Fig. 6 shows the good 

agreement between the measured and calculated FLD at RT of some Ti, Ni, Mg alloys and stainless steel. 

 

     
                                               (a)                                                                                    (b) 

                 
                                                         (c)                                                                                     (d) 



 

    
                                                         (e)                                                                                     (f) 

Fig. 6 Comparison of measured and calculated room temperature FLD for: (a) Ti-6Al-4V; (b) Ti-4Al-5Mn; (c) Ni alloy 

625LCF; (d) Ni alloy 718; (e) Mg-3Al-1Zn (AZ31B); (f) 30% Cr ferritic stainless steel 

 

Among these sheet metal alloys, only Ti alloys have exhibited a high degree of anisotropy (Fig. 6a and b, R-

value much higher than 1). Fig. 7(a) shows the FLD data of a Ti-5Al-2.5Sn alloy sheet with very strong 

anisotropy (R=12) or texture. The calculated FLD results with different R values are presented for a 

comparison, the order of yield surface has been fixed to be 6. FLC0 has been slightly shifted to distinguish 

the forming limit curves with different R values. Apparently, the increase of R value or the degree of texture 

appears to enhance the formability mainly in the left branch, i.e. when the loading ratio is below 0, compared 

with the right branch. This enhancement in formability can be explained using Hill’s left branch FLD model. 

As previously mentioned, at isotropic condition (R=1), the uniaxial loading ratio is -0.5 thus the major strain 

is 2𝜀𝑝. At strongly anisotropic condition (e.g. R=12), the uniaxial loading ratio is −𝑅/(1 + 𝑅) ≈ −0.923 thus 

the major strain would become approximately 13𝜀𝑝. 

Figure 7(b) presents the FLD data of an annealed Mg alloy (ZEK100-O) sheet with negligible anisotropy 

(R=0.79). The calculated FLD results with different p values are presented for comparison. Apparently, the 

increase of p value appears to reduce the formability in the right branch, i.e. when the loading ratio is above 

0, compared with the left branch. For this Mg alloy sheet, it is observed that p=12 matches the best to the data. 

This reduction of formability can be originated from the yield surface illustrated in Fig. 3(a), which shrinks as 

the order increases.    

 

  
                                                         (a)                                                                                     (b) 

Fig. 7 Evaluation of room temperature FLD for: (a) Ti-5Al-2.5Sn with variation in anisotropy R-value (curves have 

been shifted for a better comparison); (b) Mg ZEK100-O with variation in the order of yield surface. 

 

 



 

Modelling of FLD at elevated temperatures 

The formability of sheet metals has been found to increase with temperature during warm/hot forming 

processes. However, determining FLDs experimentally at warm/hot forming conditions is technically difficult, 

time-consuming and costly, thus data of FLD at elevated temperatures is much less available compared with 

the RT counterpart. One significant complexity is the forming speed or strain rate sensitivity during this 

warm/hot forming process. From the modelling perspective, one way of incorporating the strain rate sensitivity 

is by modifying Eq. (4) into the following expression. 

 ( )0

mn
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where m is called the strain rate sensitivity factor, 𝜀0̇ is a reference strain rate. However, uncertainty for the 

FLD calculation increases due to the following additional complexities: 

• K, n and m are all temperature-dependent; 

• m is often considered to be a constant, but its value is rather an approximation (obtained at a certain 

value of strain from two tests with different strain rates, 𝑚 = ln(𝜎2 𝜎1⁄ ) / ln(𝜀2̇ 𝜀1̇⁄ )); 

• In the FLD experiment, constant forming speed does not infer constant strain rate at all times and 

regions, thus the enhanced strain rate sensitivity of the sample at elevated temperatures is difficult to 

describe with a single equation. 

In the literature, SR and Marciniak-Kuczynski (MK) theories have been extended to combine with Eq. (12) to 

calculate FLD at elevated temperatures [3,4]. However, both extensions contain an additional fitting parameter 

and are rather case-sensitive requiring careful calibration, considering the above uncertainties.  

In JMatPro®, the strain rate sensitivity of the flow stress behaviour at elevated temperatures is treated 

differently, considering that defects (dislocations and voids) can be generated more slowly at elevated 

temperatures and the deformation mechanism may change from dislocation glide to dislocation climb, i.e. 

creep flow softening may dominate [32,33]. In addition, the enhanced mobility of defects helps alleviate, to some 

extent, the residual stress and the concentration of defects at certain regions. All of these can lead to a delayed 

localized necking due to the competition between strengthening and softening. 

Here we explore the capability of the modified HBW and HSR criteria, combined with the temperature-

dependent flow stress curve functionality in JMatPro®, to deal with FLD at elevated temperatures. The 

approach remains generally the same as described before, except that the uniaxial tensile limit strain is 

determined with the aid of a modified Clift ductile fracture-based criteria [34]: 
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where C is a material-specific constant. It is obtained from the calculated flow stress curve at RT at the 

reference strain rate with readily known uniaxial tensile limit strain. Then it is combined with the flow stress 

curve at the actual temperature and strain rate to calculate the actual limit strain and FLC0 (or εp). Finally this 

FLC0 is used in the modified HBW or HSR criteria to determine the entire FLD. 

 

Evaluation of FLD at elevated temperatures 

The FLDs of some available Al and Fe sheet metal alloys in literature at elevated temperatures are examined 

in this section. An initial comparison has been made between the reported and calculated FLC0s at various 

temperatures and strain rates [35-52]. By scaling the FLC0s of some alloys tested outside the standard thickness 

range using an empirical relationship [2], it is found that the majority of the calculated FLC0s match reasonably 

well within 30% of the reported values.  

The entire FLC results of some example Al and Fe sheet metals at various temperatures and strain rates are 

presented in Fig. 8 [35-43]. Note the constant strain rate used in JMatPro® is either the reported approximated 

value or estimated from the reported forming speed. The general trends are captured reasonably well. It can 

be found that the predicted FLC0 as well as the entire FLC consistently shifts up with increasing temperature 

at a given strain rate, or with decreasing strain rate at a given temperature. Note in these calculations, all the 

sheet metals have been assumed to be isotropic (R=1) with the simple Von Mises yield criterion (p=2) due to 



 

lack of the anisotropy information in the literature. However, the discrepancy of the calculated FLDs compared 

with the reported results can be compensated by calibration with the actual experimental uniaxial tensile limit 

strain or a pair of major-minor strains at any given loading ratio. The calibration procedure is optional in 

JMatPro® and is ignored in this report. 

 

  
                                        (a)                                                                                            (b) 

   

                                          (c)                                                                                            (d) 

  

                                          (e)                                                                                            (f) 



 

  

                                          (g)                                                                                            (h) 

Fig. 8 Evaluation of FLD of example Al and Fe alloys at varying strain rates and elevated temperatures (solid points: 

experimental data; solid lines: simulated results) (a) Al, AA5083-O at fixed strain rate (~0.01/s) [35]; (b) Al, AA5754-O 

at fixed strain rate (~2.25/s) [36]; (c) Al, AA2024-O at fixed strain rate (~0.01/s) [39]; (d) Al, AA3003-O at fixed strain 

rate (~0.1/s) [38]; (e) Al, AA5086-O at fixed strain rate (~2/s) [37]; (f) Al, AA7075-T6 at fixed temperature (420oC) [40]; 

(g) Fe, 22MnB5 at fixed strain rate (~3/s) [41]; (h) Fe, 316L stainless steel at fixed strain rate (~0.01/s) [42,43]. 

 

Conclusion 

 

To summarize, the forming limit diagram (FLD) calculation for a range of alloys is explored. Capabilities of 

several analytical FLD models are evaluated, namely the modified Hill zero extension theory for the left 

branch, and the Bressan-William (BW) shear instability theory as well as the Storen-Rice (SR) bifurcation 

theory for the right branch. The anisotropy complexities are also embedded in these theories. The joint HBW 

and HSR criteria, combined with the existing flow stress curve capability in JMatPro®, have been shown to 

agree well with the collected experimental data. The approach, with the aid of a modified Clift ductile fracture 

criterion, is also capable of tackling the effect of varying strain rates and temperatures on FLD. It provides 

further insight on the correlation between the tensile flow behavior and formability of a given material, and 

can be applied to aid the materials selection in industry regarding the sheet metal forming. 

 

References 

 
1. https://en.wikipedia.org/wiki/Forming_limit_diagram 

2. Paul, S.K. Theoretical analysis of strain-and stress-based forming limit diagrams. J Strain Analysis. 2013, 48(3): 

177-188. 

3. Jie, M., Cheng, C.H., Chan, L.C., Chow, C.L. Forming limit diagrams of strain-rate-dependent sheet metals. Int. J. 

Mech. Sci. 2009, 51: 269-275. 

4. Min, J. Lin, J., Li, J., Bao, W. Investigation on hot forming limits of high strength steel 22MnB5. Comp Mater Sci. 

2010, 49: 326-332. 

5. Stoughton, T.B., Zhu X. Review of theoretical models of the strain-based FLD and their relevance to the stress-

based FLD. Int J Plast. 2004, 20: 1463-1486. 

6. Hill, R. On discontinuous plastic states with special reference to localized necking in thin sheets. J Mech Phys Solids. 

1952, 1: 19-30. 

7. Ghazanfari, A., Assempour, A. Calibration of forming limit diagrams using a modified Marciniak-Kuczynski model 

and an empirical law. Mater Des. 2012, 34: 185-191. 

8. Bressan, J.D., William, J.A. The use of a shear instability criterion to predict local necking in sheet metal 

deformation. Int. J. Mech. Sciences. 1983, 25: 155-168. 

9. Barlat, F., Richmond, O. Modelling macroscopic imperfections for the prediction of flow localization and fracture. 

Fatigue Fract Engng Mater Struct. 2003, 26: 311-321. 

10. Brunet, M., Mguil, S., Morestin, F. Analytical and experimental studies of necking in sheet metal forming processes. 

J. Mater. Process. Technol. 1998, 80-81: 40-46. 

https://en.wikipedia.org/wiki/Forming_limit_diagram


 

11. Ahmadi, S., Eivani, A.R., Akbarzadeh, A. An experimental and theoretical study on the prediction of forming limit 

diagrams using new BBC yield criteria and M-K analysis. Comp. Mater. Sci. 2009, 44: 1272-1280. 

12. Banabic, D., Lazarescu, L., Paraianu, L., Ciobanu, I., Nicodim, I., Comsa, D.S. Development of a new procedure 

for the experimental determination of the forming limit curves. CIRP Annals – Manufacturing Technology. 2013, 

62: 255-258. 

13. Turkoz, M., Yigit, O., Dilmec, M., Halkaci, H.S. Construction of forming limit diagrams for AA 5754 and AA 2024 

aluminium alloys. Proceedings of the 12th International Conference on Aluminium Alloys. 2010: 516-521. 

14. Janbakhsh, M., Djavanroodi, F., Riahi, M. A comparative study on determination of forming limit diagrams for 

industrial aluminium sheet alloys considering combined effect of strain path, anisotropy and yield locus. J Strain 

Analysis. 2012, 47(6): 350-361. 

15. Janbakhsh, M., Loghmanian, S.M.R., Djavanroodi, F. Application of different Hill’s yield criteria to predict limit 

strains for aerospace titanium and aluminium sheet alloys. Int J Advanced Design and Manufacturing Technology. 

2014, 7: 35-44. 

16. Janssens, K., Lambert, F., Vanrostenberghe, S., Vermeulen, M. Statistical evaluation of the uncertainty of 

experimentally characterised forming limits of sheet steel. J Mater. Process. Tech. 2001, 112: 174-184.  

17. Strano, M., Colosimo, B.M. Logistic regression analysis for experimental determination of forming limit diagrams. 

Int. J Mach. Tool. Manu. 2006, 46: 673-682. 

18. Takuda, H., Mori, K., Takakura, N., Yamaguchi, K. Finite element analysis of limit strains in biaxial stretching of 

sheet metals allowing for ductile fracture. Int. J. Mech. Sci. 2000, 42: 785-798. 

19. Signorelli, J.W., Bertinetti, M.A., Turner, P.A. Predictions of forming limit diagrams using a rate-dependent 

polycrystal self-consistent plasticity model. Int J. Plast. 2009, 25: 1-25. 

20. Butuc, M.C., Gracio, J.J., da Rocha, A.B. An experimental and theoretical analysis on the application of stress-

based forming limit criterion. Int. J. Mech. Sciences. 2006, 48: 414-429. 

21. Chow, C.L., Yang, X.J., Chu, E. Prediction of forming limit diagram based on damage coupled kinematic-isotropic 

hardening model under nonproportional loading. J. Eng. Mater. Technol. 2002, 124: 259-265. 

22. Martinez-Donaire, A.J., Garcia-Lomas, F.J., Vallellano, C. New approaches to detect the onset of localised necking 

in sheets under through-thickness strain gradients. Mater. Des. 2014, 57: 135-145. 

23. Ganjiani, M., Assempour, A. An improved analytical approach for determination of forming limit diagrams 

considering the effects of yield functions. J. Mater. Process. Tech. 2007, 18: 598-607. 

24. Djavanroodi, F., Derogar, A. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium 

and Al6061-T6 aluminum alloys sheets. Mater. Des. 2010, 31: 4866-4875. 

25. Badr, O.M.M.M. Forming behaviour analysis and constitutive modelling of Ti-6Al-4V at room temperature. PhD 

thesis for Deakin University. 2014. 

26. Stachowicz, F. Effect of annealing temperature on plastic flow properties and forming limit diagrams of titanium 

and titanium alloy sheets. Trans. Jpn. Inst. Met. 1988, 29(6): 484-493. 

27. Roamer, P., Van Tyne, C.J., Matlock, D.K., Meier, A.M., Ruble, H., Suarez, F. Room temperature formability of 

alloys 625LCF, 718 and 718SPF. Proceedings of TMS, Superalloys, 1997, 315-329. 

28. Kim, H.J., Choi, S.C., Lee, K.T., Kim, H.Y. Experimental determination fo forming limit diagram and springback 

characteristics of AZ31B Mg alloy sheets at elevated temperatures. Mater. Trans. 2008, 49(5): 1112-1119. 

29. Bong, H.J., Barlat, F., Lee, M.G., Ahn, D.C. The forming limit diagram of ferritic stainless steel sheets: experiments 

and modelling. Int. J. Mech. Sciences. 2012, 64: 1-10. 

30. Chan, K.S., Koss, D.A. Stretch forming and fracture of strongly textured Ti alloy sheets. Metall. Trans. A. 1983, 

14A: 1343-1348. 

31. Min, J., Hector, L.G., Lin, J.P., Carter, J.T. Analytical methods for forming limit diagram prediction with application 

to a Magnesium ZEK-O alloy. J. Mater. Eng. Perform. 2013, 22(11): 3324-3336. 

32. Guo, Z., Saunders. N., Miodownik, A.P., Schille, J.P. Quantification of high temperature strength of nickel-based 

superalloys. Mater. Sci. Forum. 2007, 546-549: 1319-1326. 

33. Guo, Z., Saunders, N., Schille, J.P., Miodownik, A.P. Modelling high temperature flow stress curves of titanium 

alloys. Proceedings of MRS Conference. 2008. 

34. Clift, S.E., Hartley, P., Sturgess, C.E.N., Rowe, G.W. Fracture prediction in plastic deformation processes. Int. J. 

Mech. Sciences. 1990, 32(1): 1-17. 

35. Naka, T., Torikai, G., Hino, R., Yoshida, F. The effects of temperature and forming speed on the forming limit 

diagram for type 5083 aluminum-magnesium alloy sheet. J. Mater. Process. Tech. 2001, 113: 648-653. 

36. Shao, Z., Bai, Q., Li, N., Lin, J., Shi, Z., Stanton, M., Watson, D., Dean, T. Experimental investigation of forming 

limit curves and deformation features in warm forming of an aluminium alloy. Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2016, 232(3), 465-474. 

37. Zhang, C., Chu, X., Guines, D., Leotoing, L., Ding, J., Zhao, G. Effects of temperature and strain rate on the forming 

limit curves of AA5086 sheet. Procedia Engineering. 2014, 81: 772-778. 



 

38. Bagheriasl, R. Formability of aluminium alloy sheet at elevated temperature. Thesis for DPhil degree in University 

of Waterloo. 2012. 

39. Ali, W.J., Jumah, O.T. Warm forming of aluminium alloy 2024 at different temperatures. Al-Rafidain Engineering. 

2012, 20(2): 78-85. 

40. Gao, H., Politis, D.J., Luan, X., Ji, K., Zhang, Q., Zheng, Y., Gharbi, M., Wang, L. Forming limit prediction for 

AA7075 alloys under hot stamping conditions. J. Phys.: Conf. Ser. 2017, 896 012089. 

41. Li, F.F., Fu, M.W., Lin, J.P., Wang, X.N. Experimental and theoretical study on the hot forming limit of 22MnB5 

steel. Int. J. Adv. Manuf. Technol. 2014, 71: 297-306. 

42. Hussaini, S.M., Krishna, G., Gupta, A.K., Singh, S.K. Development of experimental and theoretical forming limit 

diagrams for warm forming of austenitic stainless steel 316. J Manuf Process. 2015, 18: 151-158. 

43. Kathiravan, S., Sait, A.N., Ravichandran, M. Experimental investigation on stretchability of an austenitic stainless 

steel 316L. Iranian J. Mater. Form. 2016, 3(1), 55-64. 

44. Gerdooei, M., Dariani, B.M., Liaghat, G.H. Effect of material models on formability of sheet metals in explosive 

forming. Proceedings of the World Congress on Engineering, WCE 2009, UK. 

45. Palumbo, G., Tricarico, L. Numerical and experimental investigations on the warm deep drawing process of circular 

aluminium alloy specimens. J. Mater. Process. Tech. 2007, 184: 115-123. 

46. Chu, X., Leotoing, L., Guines, D., Ragneau, E. Temperature and strain rate influence on AA5086 forming limit 

curves: experimental results and discussion on the validity of the M-K model. Int. J. Mech. Sciences. 2014, 78: 27-

34. 

47. Khan, A.S., Baig, M. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on 

the formability of an aluminium alloy. Int J. Plast. 2011, 27: 522-538. 

48. Abedrabbo, N., Pourboghrat, F., Carsley, J. Forming of AA5182-O and AA5754-O at elevated temperatures using 

coupled thermo-mechanical finite element models. Int J. Plast. 2007, 23: 841-875. 

49. Chen, Z., Fang, G., Zhao, J. Formability evaluation of aluminum alloy 6061-T6 sheet at room and elevated 

temperatures. J. Mater. Eng. Perform. 2017, 26(9): 4626-4637. 

50. Dicecco, S., Butcher, C., Worswick, M., Boettcher, E., Chu, E., Shi, C. Determination of forming limit diagrams of 

AA6013-T6 aluminum alloy sheet using a time and position dependent localized necking criterion. IOP Conf. Ser. : 

Mater. Sci. Eng. 2016: 159. 

51. Shi, D.Y., Ying, L., Hu, P., Lu, J.D., Zhao, X., Liu, W.Q. Experimental and numerical determination of thermal 

forming limit diagrams (TFLD) of high strength steel 22MnB5. AIP Conf. Proc. 2013, 1532: 406-413.  

52. Kolasangiani, K., Shariati, M., Farhangdoost, K. Prediction of forming limit curves (FLD, MSFLD and FLSD) and 

necking time for SS304L sheet using finite element method and ductile fracture criteria. J. Comput. Appl. Res. Mech. 

Eng. 2015, 4(2), 121-132. 


