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Abstract 
 
This paper describes the development of a computer model for the calculation of high 
temperature flow stress curves of titanium alloys.  Two competing mechanisms for deformation, 
either dominated by dislocation glide or dominated by dislocation climb, were considered in the 
calculation.  Validation has been carried out for a variety of titanium alloys over a wide range of 
temperatures and strain rates.  The flow stress data can be used as replacement to the constitutive 
equations in computer-aided-engineering simulation. 
 

Introduction 
 
Thermo-mechanical processing simulation requires critical material data such as strength and 
stress-strain curves (or flow stress curves).  The traditional way of obtaining such data is through 
experimentation, which is expensive and time-consuming, because mechanical properties are 
temperature and strain rate dependent.  It is therefore of no surprise that lack of material data has 
been a common problem for computer-aided-engineering (CAE) simulation tools. 
 
CAE simulation packages normally provide a range of constitutive equations that describe stress 
as a function of temperature, strain and strain rate, e.g. the widely used Johnson-Cook model [1].  
However, the choice of the equations used can significantly affect the simulation results [2,3,4], 
as each has its own limitations and can only work in a certain range [5].  Not only do users have 
to decide which equation to use, but they also have to determine the values of the material 
parameters used in the equation, where experimental flow stress data is a pre-requisite [4,6,7].  
 
The present paper looks at material flow from the viewpoint of the actual mechanisms during 
deformation.  Two competing mechanisms for deformation, i.e. either dominated by dislocation 
glide (DDG) or dominated by dislocation climb (DDC), were considered in the investigation.  
After a recapitulation of previous work on the calculation of high temperature strength, the paper 
focuses on calculating stress-strain curves in different temperature and strain rate regimes.  The 
advantages of using such an analytical approach to replace subjectively selected constitutive 
equations are discussed.  

 
High Temperature Strength 

 
Generally speaking, the strength of an alloy decays monotonically with increasing temperature 
until a critical temperature is reached, above which there is a sharp fall in strength.  This sharp 
drop in strength is invariably due to a change of deformation mechanism from being dominated 
by dislocation glide (DDG) at low temperatures to being dominated by dislocation climb (DDC) 
at higher temperatures [8,9].  The latter is usually the controlling mechanism for creep.  Different 
strength models have been employed in previous work [8,9] to account for the two different 
mechanisms.  Whichever has the lower resistance to deformation controls the final strength of 
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the alloy.  The two regions are clearly shown in Fig. 1, using the 0.2% proof stress vs. 
temperature (σ0.2-T) plot of an IMI 318 alloy (equivalent to Ti-6Al-4V) as an example.  The 
strain rate used in calculation is taken as 3.33x10-5 s-1 (i.e. 0.002/min).  This is the typical value 
for tensile testing and hereafter will be denoted as 0ε .  The strain corresponding to σ0.2 is 0.002, 
hereafter denoted as ε0.  The calculation of strength at elevated temperatures forms the basis of 
the following calculation of stress-strain curves. 
 

Stress-Strain Curve 
 
Stress as a result of deformation is dependent on strain rate (ε ), strain (ε), and temperature (T), 
which can be described by the following function: 

( , , )f Tσ ε ε=   (1)  

The σ0.2-T plot shown in Fig. 1 is a special case 
of Eq. 1 where ε  and ε are fixed as ε0 and 0ε , 
respectively.  The stress-strain (σ-ε) curve is 
another special case of Eq. 1 where T and ε  are 
fixed.  With the recognition of the switch of 
mechanism in the σ0.2-T plot, one would expect 
to see such a switch in a σ-ε curve as well.  This 
is schematically shown in Fig. 2, where 
deformation starts in the DDG-controlled region, 
and then above a critical strain (εt) the creep-
controlled flow takes over.  In reality, apart from 
the mixed mode shown in Fig. 2, the observed σ-
ε curve can be dominated by either of the two 
mechanisms.  The procedures for the calculation 
of σ-ε curves in the two regions are described 
below, respectively.   
 

Fig. 1. Comparison between experimental and calculated 
proof stress for titanium alloy IMI 318 (Ti-6Al-4V). 
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Fig. 2.  Change of deformation mechanism from 
DDG to DDC in a high temperature stress-strain 
curve at the critical transition strain (εt) 
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Stress-strain curve in DDG region 
Stress-strain curve can be considered as the sum of an elastic region and a plastic region.  In the 
elastic region, the stress is proportional to the strain according to Hooke’s law.  The plastic 
region is where strain hardening occurs.  Stress is related to strain via work hardening coefficient 
n and constant K: 

nKσ ε=   (2) 

The value of n can be estimated from σp via the following relationship:  

.exp( )σ= 0 2n a b    (3) 

where a and b are material constants dependent of alloy type.  Their values have been fitted 
empirically for a wide range of titanium alloys [10].  When σ0.2 is known, n is known.  As σ0.2 is 
the stress at strain ε0, K can then be calculated as: 

. /σ ε= n
0 2 0K    (4) 

 
Most materials are sensitive to the rate of deformation, the so-called strain rate hardening.  This 
behaviour often obeys a power law via strain rate sensitivity m.  Strain rate hardening can be 
combined with strain hardening and described 
as below: 

n mKσ ε ε=  (5) 

When σ0.2 corresponds to 0ε , the 0.2% proof 
stress at strain rate ε  can be calculated as:  

( / )m
p 0σ σ ε ε=  (6) 

Therefore the stress at any given strain and 
strain rate can be calculated, which gives the σ-
ε curve at any strain rate and temperature.  Fig. 
3 is the calculated stress-strain curves for an 
Ti6242 alloy at room temperature (RT) and 
482°C.  The strain rate used is 3.33x10-5 s-1.  As 
this is in the DDG-controlled region, only strain 
hardening is observed. 
 
Flow stress curve in DDC region 
When in the DDC region where deformation is creep-controlled, creep curves are usually used to 
describe strain as a function of stress, temperature and time t, i.e.: 

( , , )ε σ= g T t   (7)  

Since there are only two independent variables in strain, strain rate and time, Eq. 7 and Eq. 1 are 
essentially equivalent.  A creep curve is therefore just another special case of Eq. 1 where T and 
σ are fixed. 
 
A typical creep curve contains three stages: primary, secondary and tertiary.  The creep model to 
describe the primary creep follows the work of Li [11]: 

Fig. 3.  Comparison between experimental and 
calculated stress-strain curves for an Ti6242 alloy at 
RT and 482°C.  The strain rate used is 3.33x10-5 s-1.  
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where pε  and sε  are respectively the primary and secondary creep rates, iε  is the initial creep 
rate and K0 is an empirically evaluated materials constant.  iε  is set to be proportional to sε  in 
the present study [12].  To account for the tertiary stage an empirical model is used, which 
relates the tertiary creep rate to the secondary rate and the creep rupture life: 

42 ( / )t d l sC t t Rε ε⎡ ⎤= ⎣ ⎦   (9) 

where tε  is the tertiary creep rate, Cd is a "damage constant" and Rl is the rupture life, which can 
be readily calculated from sε  via a Monkman-Grant type relationship [9].   
 
Solution to Eqs. 8 and 9 relies on prior knowledge of the secondary creep rate, which can be 
calculated via the equation below [9,13,14]: 

'( / )( / )n
s AD Gb RT Eε σ=   (10) 

where A is a material constant, D the diffusion coefficient, b the Burgers vector, σ now termed as 
the applied stress, G and E the shear and Young's modulus of the matrix at the creep temperature, 
respectively.  The stress exponent n’ is related to the mechanism of the creep and was set as 4 for 
both alpha and beta phases in titanium alloys.  Almost all of the parameters in Eq. 10 can be 
calculated [9,15]. This leaves A as the only adjustable parameter, fitted with experimental results. 
 
With the creep rates for all the three stages known from Eqs. 8, 9 and 10 for a given stress and 
temperature, strain ε as a function of time t, i.e. the creep curve, can be calculated as below: 

( )p s t tε ε ε ε= + +   (11) 

 
At a fixed temperature, the stress-strain curves ( , )fσ ε ε=  and the creep curves ( , )f tε σ=  are 
effectively forming the same surface in the 3D space of axes σ, ε, and ε  or t.  If a series of creep 
curves corresponding to different stresses are known, the stress-strain curve at a fixed strain rate 
can be obtained.  The calculated flow stress curves of grade Ti-6Al-4V (ELI) are shown in Fig. 4 

Fig. 4 . Comparison between experimental and calculated flow stress curves for a Ti-6Al-4V (ELI) alloy at 
(a) 950ºC with various strain rates, and (b) various temperatures with strain rate 0.1/s. 
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together with experimental data, corresponding to various strain rates at 950°C and various 
temperatures at strain rate 0.1 s-1, respectively.  In all cases there is no detectable DDG region.   
 

Applications of Model 
 
A computer model has been developed to combine the calculation of stress-strain curves in the 
two regions as described in the previous session.  One can now calculate the stress-strain curve at 
any given temperature and strain rate.  The switch of deformation mode shown in Fig. 2 is not 
observed in Figs. 3 and 4.  This is because the value of εt can be quite different depending on 
temperature and strain rate.  Generally speaking, higher temperatures and lower strain rates 
results in smaller εt.  Such change in the shape of stress-strain curve is clear shown in Fig. 5, 
using an Ti-6Al-4V alloy as an example.  The strain rate used in the calculation of Fig. 5(a) is 
3.33x10-5 s-1, and the temperature for Fig. 5(b) is 700°C.  Switch of deformation mode is clearly 
observed at 570°C in Fig. 5(a) and 0.1 s-1 in Fig. 5(b), respectively.  It should be noted that flow 
softening is often suggested to be due to recrystallisation.  However, as clearly shown here, flow 
softening is a natural result of the DDC-controlled deformation whether or not recrystallisation 
takes place.   

 
The consideration of such a switch in deformation mode allows strain hardening and flow 
softening to be naturally accounted for in the calculation of stress-strain curves.  The problems 
associated with picking the right constitutive equation and assigning correct values to the 
material parameters involved have therefore been effectively removed.  The predictive capability 
of the model in flow stress calculation for a wide range of Ti-alloys is demonstrated in Fig. 6, 
which have been tested over a wide range of temperatures and strain rates.  The model has been 
implemented in computer software JMatPro [15].  Links with many CAE simulation packages 
have been established and the calculated flow stress data can now be organized in such a format 
that can be directly read by such packages [16].   
 

Summary 
 
The paper reports the development of a computer model that is able to calculate the high 
temperature strength and stress-strain curves in titanium alloys.  Two mechanisms of deformation 

Fig. 5.  Calculated flow stress curves for a Ti-6Al-4V alloy at (a) various temperatures with strain rate 
3.33x10-5 s-1, and (b) 700ºC with various strain rates.  Switch of deformation mechanism is clearly marked 
when taking place at 570°C in (a) and 0.1 s-1 in (b), respectively.  
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were considered in the model, dominated by either dislocation glide or dislocation climb.  The 
model can therefore generate stress-strain curves very different in shape, with strain hardening, flow 
softening or a mixture of the two.  The problem caused by lack of material data in CAE processing 
modelling has been largely overcome.   
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Fig. 6.  Comparison between experimental and calculated flow stress for various titanium alloys at various 
temperatures and strain rates. 
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